Coffee consumption was closely related to male gender, high body mass index (BMI), alcohol drinking, and smoking. On univariable and multivariable analyses, drinking coffee lowered serum levels of total protein, albumin, and aspartate aminotransferases (AST). On multivariable analyses, smoking raised serum γ-glutamyl transferase (GGT) level and decreased serum protein and albumin levels, while alcohol drinking raised GGT level after adjustment for age, gender, regular medication, BMI, coffee and alcohol drinking amounts, and smoking.
In the multivariable models adjusted for age, gender, BMI, regular medication, daily amounts of alcohol and coffee drinking, current smokers had significantly lower serum levels of total protein, and albumin, but higher GGT levels compared with never or past smokers (Table 5). In addition, daily and lifetime smoking amounts significantly affected serum total protein, albumin, and GGT levels, but did not affect AST or ALT (Table 5).
black coffee pieces of me album download 117
Of our study population, 173 (34.6%) did not drink alcoholic beverages, 19 (3.8%) had quit drinking, and 308 (61.6%) were current alcohol drinkers (Table 1). In univariable analyses, heavy daily alcohol drinking was associated with lower levels of serum albumin and high levels serum AST, ALT, GGT and TB levels (Table 3). However, the increases in AST and ALT levels as the result of daily alcohol consumption did not maintain statistical significance after multivariable adjustments for age, gender, BMI, regular medication, coffee drinking, and smoking (Table 6), which showed that primarily ALP and GGT were affected by alcohol drinking. As shown in Table 6, mean adjusted ALP levels were affected by current alcohol drinking and heavy lifetime drinking amounts; however, these effects did not demonstrate a consistent tendency or pattern. GGT levels were undoubtedly increased in current drinkers and in heavy daily drinkers, as well as in heavy lifetime alcohol drinkers (Table 6).
In the present study, strong correlations existed among coffee consumption, alcohol drinking and smoking habits. The associations between those lifestyle habits and LFTs were investigated using multivariable analyses: coffee drinking was significantly associated with lower levels of serum total protein, albumin, and AST, but did not affect TC, ALT, GGT and TB. In addition, cigarette smoking diminished serum total protein and albumin, whereas it raised GGT levels independently. Alcohol drinking independently raised GGT levels. As our best knowledge, this is the first study that demonstrated independent effects of coffee drinking, smoking and alcohol consumption on the comprehensive LFTs commonly used in humans. Several previous studies included only limited test items in LFT and their associations with each of the variables (alcohol, smoking or coffee drinking), but not with all of these common lifestyle habits were reported.
We demonstrated that total protein and albumin levels were decreased by both coffee drinking and smoking. The decrease of serum protein and albumin levels according to increase of daily coffee consumption amount was also confirmed in subjects who had never drunken alcohol nor smoked in the present study (data not shown). Although most previous studies had not mentioned total protein or albumin levels, a study documented that current or past coffee consumption and smoking lower serum albumin, globulin, and all other protein fractions [15]. Moreover, in the chronic hepatitis patients, current smokers were more likely to have lower albumin levels than nonsmokers [16]. However, the biological mechanisms leading to decreased levels of serum protein and albumin by coffee drinking and smoking have not been studied, yet.
High coffee consumption and heavy smoking were both associated with low total protein and albumin levels. High coffee consumption lowered serum AST levels, heavy smoking raised GGT levels, and heavy alcohol drinking raised GGT levels, independently. Because smoking, coffee and alcohol drinking habits showed strong interactions among each other, the association of those habits and LFTs should be carefully analyzed and interpreted. Further studies on the mechanisms of these associations are warranted.
After water, tea and coffee are the two most consumed beverages in the world, although consumption patterns vary between countries. Because of the fairly high content of antioxidants and the frequent use, coffee and tea are important antioxidant sources in many diets. Several different compounds contribute to coffee's antioxidant content, e.g., caffeine, polyphenols, volatile aroma compounds and heterocyclic compounds, [25,50-52]. Many of these are efficiently absorbed, and plasma antioxidants increase after coffee intake [50,53]. In green tea, the major flavonoids present are the monomer catechins, epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin. In black tea the polymerized catechins theaflavin and thearubigen predominate in addition to quercetin and flavonols [54,55].
2ff7e9595c
Comments